Unusual Car Navigation Tricks: Injecting RDS-TMC Traffic Information Signals

Andrea Barisani
Chief Security Engineer
<andrea@inversepath.com>

Daniele Bianco
Hardware Hacker
<daniele@inversepath.com>

http://www.inversepath.com
DISCLAIMER:
All the scripts and/or commands and/or configurations and/or schematics provided in the presentation must be treated as examples, use the presented information at your own risk.

Copyright 2007 Inverse Path Ltd.
Andrea Barisani <andrea@inversepath.com>
Daniele Bianco <daniele@inversepath.com>

This work is released under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License available at http://creativecommons.org/licenses/by-nc-nd/3.0.
What's this all about?

- Modern In-Car Satellite Navigation systems are capable of receiving dynamic traffic information.
- One of the systems being used throughout Europe and North America is RDS-TMC (Radio Data System – Traffic Message Channel).
- One of the speakers bought a car featuring one of these SatNavs...he decided to play with it...just a little...
- We'll show how RDS-TMC information can be hijacked and falsified using homebrew hardware and software.
Why bother?

- First of all...hardware hacking is fun and owning a car is priceless ;-P
- Ok seriously...Traffic Information displayed on SatNav is implicitly trusted by drivers, nasty things can be attempted
- More important: chicks will melt when you show this...
The Radio Data System

- RDS is used for transmitting data over FM (1187.5 bits/s)
- Described in European Standard EN50067 (April 1998)
- Its most prominent function is showing FM Channel Name on the radio display, also used for Alternate Frequencies, Programme Type, News override, etc.

19kHz Pilot Tone
Mono (L+R) 15k 19k 23k Stereo (L-R) 38k

RDS Signal
Freq (Hz) 53k 57k

Copyright 2007 Inverse Path Ltd.
RDS-TMC Introduction

• First introduced around 1997 (Germany), implemented around Europe in the following years (Italy got it in 2004, Australia will get it in 2007)

• Described in ISO 14819-1

• TMC uses RDS for transmission over FM broadcasts
Despite being a 10 year old protocol, implementation has been slow, SatNav systems have been fully supporting RDS-TMC only in the last few years.

- Implemented on most in-car SatNav shipped by the original manufacturer.
- External and portable SatNav offer jacks for external FM receivers which add RDS-TMC capabilities.
- RDS-TMC is available in both free and commercial services.
- TMC can also be transmitted over DAB or satellite radio.
The Issue

- there's no form of authentication of the data (encryption is supported for commercial services but irrelevant to our goals, more on that later)
- We tested the feasibility of decoding and injecting arbitrary TMC messages against our “victim”
- Off-the-shelf components and cheap electronics have been used
- ...you'll be the judge of our results...
Sniffing RDS

- We need to get a “raw” FM signal (MPX), there's a number of tuners that provide an accessible pin for that.
- We use the FM1216 module from Philips available on many PCI TV cards (http://pvrhw.goldfish.org).
- Once we have the signal we decode the RDS sub-carrier using a TDA7330B RDS Demodulator (which samples the 1.11875 kHz signal), a PIC for serial conversion and decoding software ([sRDSd](http://sRDSd.berlios.de)).
- Using custom hardware and software allowed us to fully understand the protocol and decode TMC (alternatively http://rdsd.berlios.de looks like the most promising project).
Sniffing RDS

Main components:

1x TDA7330B
1x PIC16F84
1x MAX232

Injecting RDS-TMC Traffic Information Signals
PIC Programming

- We program the PIC for converting RDS Demodulator data and send it to the serial port
- custom PIC programmer, a variation of the well known JDM one (http://www.semis.demon.co.uk/uJDM/uJDMmain.htm)
- output are 0 and 1, bad quality data is shown with * and + (either ignore sequences with bad data or replace them with 0 and 1 if you feel lucky)
- http://dev.inversepath.com/rds/pic_code.asm
The Output

cat /dev/ttyS0
RDS Protocol

Group structure (104 bits):

| Block 1 | Block 2 | Block 3 | Block 4 |

Block structure (26 bits):

| Data (16 bits) | Checkword (10 bits) |

Block 1:

| PI code | Checkword |

Block 2:

| Group code | B0 | TP | PTY | <5 bits> | Checkword |
TMC / Alert-C Protocol

Block 1:

| PI code | Checkword |

Block 2:

| Group code | B0 | TP | PTY | T | F | DP | Checkword |

Block 3:

| D | PN | Extent | Event | Checkword |

Block 4:

| Location | Checkword |

Injecting RDS-TMC Traffic Information Signals

T = 1 bit
F = 1 bit
DP = 3 bits
D = 1 bit
PN = 1 bit
Extent = 3 bits
Event = 11 bits
Location = 16 bits
Checkword = 10 bits

Copyright 2007 Inverse Path Ltd.
PI code => Programme Identification
Group code => message type identification
B0 => version code
TP => Traffic Program
PTY => Programme Type
T, F, D => Multi Group messages
DP => Duration and Persistence
D => Diversion Advice
PN => +/- direction
Extent => event extension
Event => event code (see also TMDD – Traffic Management Data Dictionary)
Location => location code (DAT Location Table - TMCF-LT-EF-MFF-v06)
Our custom tool for RDS decoding:

- ISC-style licensed
- performs nearly full RDS-TMC (and basic RDS) decoding
- text and HTML output with Google Map links of GPS data

http://dev.inversepath.com/rds/srdsd

Usage:

```
Usage: ../srdsd/srdsd [-h|-H|-P|-t] [-d <location db path>] [-p <PI number>] <input file>
   -t display only tmc packets
   -H HTML output (outputs to /tmp/rds-<random>/rds-* .html)
   -p PI number
   -P PI search
   -d location db path
   -h this help
```

Note: -d option expects a DAT Location Table code according to TMCF-LT-EF-MFF-v06 standard (2005/05/11)
srdsd – PI Search

- We must “lock” parsing to the relevant PI
- Every FM Channel has its own code (google knows)
- You can guess the PI code by finding the most recurring 16-bit string:

```
# ./srdsd -P rds_dump.raw | tail

0010000110000000: 4140 (2180)
1000011000000001: 4146 (8601)
0001100000000101: 4158 (1805)
1001000011000000: 4160 (90c0)
0000110000000010: 4163 (0c02)
0110000000010100: 4163 (6014)
0011000000001010: 4164 (300a)
0100100001100000: 4167 (4860)
1010010000110000: 4172 (a430)
0101001000011000: 4185 (5218)
```

```
# ./srdsd -p 5218 -d ~/loc_db/ rds_dump.raw
```
Got RDS message (frame 75)

Programme Identification: 0101001000011000 (5218)
Group type code/version: 0000/0 (OA – Tuning)
Traffic Program: 1
Programme Type: 01001 (9 – Varied Speech)
Decoded OA group:

- Traffic Announcement: 0
- Music Speech switch: 0
- Decoder Identification control: 100
 (Dynamic Switch / PS char 1,2)
- Alternative Frequencies: 10101010, 10101111
 (104.5, 105)
- Programme Service name: 0101001001010100 (RT)
- Collected PSN: RTL102.5

<table>
<thead>
<tr>
<th>Raw dump</th>
<th>Data</th>
<th>Checkword</th>
<th>Hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block 1:</td>
<td>0101001000011000</td>
<td>0000010100</td>
<td>5218</td>
</tr>
<tr>
<td>Block 2:</td>
<td>0000010100101100</td>
<td>0010101101</td>
<td>052c</td>
</tr>
<tr>
<td>Block 3:</td>
<td>1010101010101111</td>
<td>1010100110</td>
<td>aaaf</td>
</tr>
<tr>
<td>Block 4:</td>
<td>0101001001010100</td>
<td>0100110101</td>
<td>5254</td>
</tr>
</tbody>
</table>
Got RDS message (frame 76)
Programme Identification: 0101001000011000 (5218)
Group type code/version: 1000/0 (8A - TMC)
Traffic Program: 1
Programme Type: 01001 (9 - Varied Speech)
Decoded 8A group:
Bit X4: 0 (User message)
Bit X3: 1 (Single-group message)
Duration and Persistence: 000 (no explicit duration given)
Diversion advice: 0
Direction: 1 (-)
Extent: 011 (3)
Event: 00001110011 (115 - slow traffic (with average speeds Q))
Location: 0000110000001100 (3084)
Decoded Location:
Location code type: POINT
Name ID: 11013 (Sv. Grande Raccordo Anulare)
Road code: 266 (Roma-Ss16)
GPS: 41.98449 N 12.49321 E
Link:
http://maps.google.com/maps?ll=41.98449,12.49321&spn=0.3,0.3&q=41.98449,12.49321

<table>
<thead>
<tr>
<th>Raw dump</th>
<th>Data</th>
<th>Checkword</th>
<th>Hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block 1:</td>
<td>0101001000011000 0000010100</td>
<td>5218</td>
<td></td>
</tr>
<tr>
<td>Block 2:</td>
<td>1000010100101000 1110000111</td>
<td>8528</td>
<td></td>
</tr>
<tr>
<td>Block 3:</td>
<td>0101100000111001 0001011001</td>
<td>5873</td>
<td></td>
</tr>
<tr>
<td>Block 4:</td>
<td>0000110000001100 0111000011</td>
<td>0c0c</td>
<td></td>
</tr>
</tbody>
</table>
Got RDS message (frame 181)

Programme Identification: 0101001000011000 (5218)
Group type code/version: 0011/0 (3A - ODA ID)
Traffic Program: 1
Programme Type: 01001 (9 - Varied Speech)

Decoded TMC Sys Info group (3A - AID 52550):
Location Table Number: 000001 (1)
Alternative Frequency bit: 1
Mode of Transmission: 0
International Scope: 1
National Scope: 0
Regional Scope: 0
Urban Scope: 0
AID: 1100110101000110 (52550)

Raw dump	Data	Checkword	Hex
Block 1: | 0101001000011000 | 0000010100 | 5218
Block 2: | 0011010100110000 | 1111101000 | 3530
Block 3: | 0000000000110100 | 0010011011 | 0068
Block 4: | 1100110101000011 | 1110010010 | cd46
Injecting RDS-TMC

- We use a commercially available RDS encoder (40$ USD), but it's reasonable to build your own (we are working on it).
- i2c is being used for communicating with its chipset, we use our custom C application over the supplied client for being able to send different Group Types.
- We set all parameters (PI, PTY, etc) + the remaining data (last 3 RDS Blocks in Hexadecimal).
- The checkword is automatically computed by the chipset.

http://dev.inversepath.com/rds/i2c_minirds.tar.gz
Injecting RDS-TMC

unsigned char PI_buf[PI_BUF] = { 'x52', 'x18' }; /* PI */
unsigned char PS_buf[PS_BUF] = { 'R', 'A', 'D', 'I', '0', '1', '0', '5' }; /* PS */
...
unsigned char UDG2_buf[UDG2_BUF] = { 'x35', 'x30', 'x00', 'x66', 'xCD', 'x46' }; /* 3A */
unsigned char UDG1_buf[UDG1_BUF] = { 'x85', 'x22', 'xC8', 'x6C', 'x05', 'x6F' }; /* 8A */

Group B0 TP PTY D F DP
8 0 1 9 0 0 2
8A Group Varied Speech

D PN Extent Event
1 1 1 108
Queueing Traffic

Location
1391
| Check against your country |
| Location Table |

Copyright 2007 Inverse Path Ltd.
Injecting RDS-TMC Traffic Information Signals

Main components:

1x MiniRDS Encoder
(http://www.pira.cz)
1x FM transmitter
1x PIC16F84
1x SAA1057 (digital PLL tuning)
1x closed dipole antenna
Injection Circuitry

Copyright 2007 Inverse Path Ltd.

Injecting RDS-TMC Traffic Information Signals
The FM transmitter can be tuned to arbitrary frequencies.

It's important to have a stable transmitter for data injection.

Long distances can be easily covered (but it might be desirable to keep it short enough to reach only the victim).
Transmitting FM

TX “The Sterilizer” Antenna

(Resistance is Futile)
Locking the SatNav Tuner

- RDS-TMC is detected using 3A Sys Info groups which specify the Location Table, the Scope of the service and timing settings.

- Hijack existing channels:
 1. Find the frequency of a channel that provides RDS-TMC
 2. Obscure the channel and send 8A packets (3A not necessary) when SatNav locks on it (careful timing)

- Fake a FM broadcast using 3A groups:
 1. Find an unused frequency
 2. Transmit 3A groups continuously + 8A packets
Option 1: Mix the audio component taken on the Alternate Frequency (AF) for the hijacked channel

Option 2: Fake a new channel on an unused frequency

Copyright 2007 Inverse Path Ltd.
Attack 1:
Standard Traffic Msgs

• We can create:
 1. Queues
 2. Bad Weather (Rain, Smog, Fog, Fresh Snow, ...)
 3. Full Car Parks
 4. Overcrowded Service Areas (OMG!)
 5. Accidents
 6. Roadworks

...and so on...

• Not particularly exciting but still nice...it gets better though...

Copyright 2007 Inverse Path Ltd.
Attack 1: Standard Traffic Msgs

Code 108
- Queueing Traffic
Attack 2: Closing Roads

- We can close arbitrary roads, bridges and tunnels with a number of Events: Closed, No through traffic, Accidents
- The SatNav will pop-up the event (even if no diversion is specified on our model) and ask the user for a detour
- If the closed road is encountered during re-calculation of the route (which is a very common thing) it will be *silently* avoided

- this attack is also known as “keep your parents from reaching home”...
Attack 2: Closing Roads

Code 401 - Closed
Attack 2: Closing Roads

Normal route to home

Route avoiding the “Closed” Event

Copyright 2007 Inverse Path Ltd.
Attack 3: Security Messages

- The Event table supports a number of security related messages
- We doubt anyone ever used them so far
- They pose a very interesting target for social engineering purposes (Homeland Security would freak out)
Code 1518 – Terrorist Incident
Attack 3:
Security Messages

Code 1481 – Air raid, danger
Attack 3: Security Messages

Code 978 – Air crash
Attack 3: Security Messages

Code 1516 – Bomb alert
Attack 3:
Security Messages

- Security messages can be pop-up, if they affect current route
- Video Clip time!

Code 1571
Security alert. Stationary traffic
Other funny messages

Code 1456 – Bull Fight (you never know...)
Code 1560 – Delays due to parade

...and many more...(no you can't have a pony)
Implementation Issues

• On our Honda integrated SatNav we've seen that:
 ➔ The PI is not associated to the frequency, any PI can be used on any frequency for hijacking
 ➔ Total cancellation (Event: 2047, Location: 65535) is not honoured
 ➔ Broadcast message (Location: 65535) is not honoured
 ➔ Diversion bit is ignored for some categories and always assumed = 1

• We expect other SatNav systems to have similar or even more interesting issues
RDS-TMC Encryption

- TMC supports a very lightweight encryption for commercial services
- Described in ISO 14819-6
- It's used for signal discrimination rather than authentication
- Only the Location Code is encrypted
- It involves bitwise operations against a key
- The key can be trivially broken by sampling some data
- Terminals that support encryption are also expected to accept un-encrypted data, so injection is still possible
Security Considerations

- RDS-TMC can be trivially injected
- Drivers don't tend to have any security awareness towards their SatNav, social engineering, forced detours and panic attacks are possible
- We don't think it's "The End Of The World As We Know It" but these systems should be authenticated considering their increased usage and expansion
- These technologies have a very long life span and "patching" is not easy
- We hope to increase awareness about these kind of problems
The Future

- TMC is also supported over DAB and satellite radio, it's harder to inject compared to FM but still possible.
- TPEG (Transport Protocol Experts Group) is the new standard designed for replacing TMC. It supports encryption but it's still optional. (http://tpeg.org)
- GST (Global System for Telematics) is an impressive new architecture for delivering a number of services. It's backed up by many manufacturers and it will support PKI for billing and transport purposes. Adoption is many years away from now. (http://gstforum.org)
Similar Systems

- Microsoft DirectBand (http://www.directband.com), used for MSN Direct, is another FM subcarrier channel for data transmission
- It has a larger bandwidth (15 times that of RDS) and full encryption
- Other than special wristwatches it's also been used on SatNav systems for traffic information (http://garmin.msndirect.com)
- Closed standard, not available in Europe, looks very promising...we'd love to play with that too ;)

Copyright 2007 Inverse Path Ltd.
Thanks for listening!
Questions?

(shameless plug)
http://www.inversepath.com

Traffic Sign Images used with permission from
http://gettingaroundgermany.home.att.net
Thanks to Brian Purcell

Copyright 2007 Inverse Path Ltd.